The Hive
GitHubLinkedInEmail
  • 🏠Home
  • 🌐RECON
    • πŸ“‘Passive (OSINT)
      • ⏩Metadata
      • ⏩Social Platforms
        • Email
        • Tumbler
        • Redit
        • Github
        • Tinder
        • TikTok
        • Snapchat
        • Instagram
        • Facebook
        • Twitter
        • Google
        • LinkedIn
    • πŸ“‘Active
      • ⏩Host Discovery / Network Mapping
      • ⏩nmap cheat sheet
      • ⏩masscan cheat sheet
    • πŸ“‘Web Recon
      • ⏩Web Server Discovery
      • ⏩Hidden Hosts
      • ⏩Directories & Subdomains
      • ⏩SSL Certs
      • ⏩CMS
      • ⏩WAF Detection
    • πŸ“‘Firewall Evasion
  • πŸ“—Web Attacks
    • 🟒Server Side
      • 🟩Authentication Mechanisms
      • 🟩Access Control (Authorization)
      • 🟩Directory Traversal
      • 🟩OS Command Injection
      • 🟩Server-Side Request Forgery (SSRF)
      • 🟩XML External Entity (XXE) Injection
      • 🟩File Upload
      • πŸ”§SQL Injection
      • 🟩Information Disclosure
      • 🟩Business Logic
    • 🟒Client Side
      • 🟩Cross-site request forgery (CSRF)
      • πŸ”§Cross-site scripting (XSS)
  • πŸ“’Network attacks
    • 🟑Network Services
      • 🟨Brute Force
      • 🟨DNS
      • 🟨IPv6
      • 🟨FTP
      • 🟨SSH
      • 🟨SMB
      • 🟨SNMP
      • 🟨SMTP
      • 🟨POP3
      • 🟨IMAP
      • 🟨MSSQL
      • 🟨MySQL
      • 🟨MSRPC / RPCbind
      • 🟨LDAP
      • 🟨NTP
      • 🟨NFS
      • 🟨Telnet
      • 🟨WebDAV
      • 🟨RDP
      • 🟨RSIP
      • 🟨Rlogin
      • 🟨VPNs
      • 🟨Echo
      • πŸ”§RTP
      • πŸ”§VOIP
        • SIP
    • 🟑Network Devices
      • 🟨IPv6 Attacks
        • Neighbor Impersonation
        • Router Advertisement Flooding
      • 🟨Switch Attacks
        • Cisco Exploitation
        • STP Spoofing
        • VLAN Hopping
        • MAC Flood
      • 🟨Router Attacks
        • Router Exploitation
        • HSRP Hijacking
        • πŸ”§RIP Spoofing
        • πŸ”§OSPF Attacks
        • πŸ”§VRRP MitM
      • 🟨NAC Bypass
        • Captive Portal
        • 802.1X / EAP Bypass
      • 🟨Printer Exploitation
    • 🟑MITM & Poisoning
      • 🟨Bettercap
      • 🟨HTTPS Downgrade / HSTS Bypass
      • 🟨Session Hijackings
      • 🟨Malicious Update
      • 🟨RDP Downgrade
      • 🟨DNS Spoofing
      • 🟨NTP Spoofing
      • 🟨ARP Spoofing
      • 🟨DHCP Poisoning
      • 🟨DHCPv6 Spoofing
      • 🟨SSDP Spoofing
      • 🟨WSUS Spoofing
      • 🟨ADIDNS Poisoning
      • 🟨WPAD Abuse
    • 🟑Wireless Attacks
      • 🟨Protocol Concepts
      • 🟨Basics
      • 🟨Attacks
    • 🟑Sniffing
      • 🟨Wireshark
      • 🟨tcpdump
    • 🟑Denial of Service
  • πŸ“•Red Team
    • πŸ”΄Windows
      • β­•Security Concepts
        • Windows Security Components
        • Active Directory Components
        • Kerberos
        • Loggon Sessions and Access Tokens
        • Permissions and Access Control
        • Windows Registry
        • Object Management
      • β­•Physical Attack
      • β­•Enumeration
      • β­•Privilege Escalation
        • DLL Hijacking
          • Phantom DLL Hijacking / Replacement
          • Search Order Hijacking ( Preloading )
          • DLL Side-Loading
        • Service Misconfigurations
          • Weak Registry Permissions
          • Insecure Service Executables
          • Insecure Permission
          • Unquoted Service Path
        • Creating a New Service (admin to system)
        • Registry
          • AlwaysInstallElevated
          • AutoRuns
        • Scheduled Tasks
        • Mass Roll-outs
        • Startup Apps
        • Installed Applications
        • Loopback Services
        • Insecure GUI APPs
        • Potatos
        • Printspoofer / SEImpersonate
        • PSEXEC (admin to system)
      • β­•Credential Dumping
      • β­•Persistence
        • Invisible Account Forger
        • Add User
        • Scheduled Tasks
        • Run Registry Keys
        • Logon Scripts
        • Screensavers Hijack
        • Powershell Profiles & Modules
        • Service Creation/Modification
        • Shortcut Modification
        • Startup Folder
        • RDP backdoors
        • COM Hijacking
    • πŸ”΄Active Directory
      • β­•Domain Enumeration
      • β­•Tools & Frameworks
        • Evil-WinRM
        • CME cheat sheet
        • SharpSploit
        • impacket cheat sheet
        • DeathStar
      • β­•Exploitation
        • LLMNR Poisoning
        • SMB/NTLM Relay
        • DNS Takeover + LDAP Relay
        • Cracking Hashes
        • Password spraying
        • ADCS + PetitPotam NTLM Relay
        • EternalBlue
        • ZeroLogon
        • MS Exchange ProxyShell
        • MS Exchange ProxyLogon
        • Java JBOSS
      • β­•Privilege Escalation
        • Token Impersonation
        • DNS Admins
        • AD CS Abuse
        • ACL Abuse
          • GenericAll
          • Write Property
          • Self-membership
          • ForceChangePassword
          • Managed Security Groups
          • Exchange Windows Permissions
        • Group Policy Objects (GPOs)
        • Custom SSPs
        • PrintNightmare
      • β­•Lateral Movement
        • RDP Password Decryption
        • RDP Session Hijacking
        • headless RDP with SharpRDP
        • Domain Shares
        • SCF File Attacks
        • Pass the Hash / Password
        • Overpass the Hash / Pass the Key
        • Pass The Ticket
        • Kerberosting / AS-REP Rosting
        • Kerberos Delegation
      • β­•Credential Dumping
        • CredSSP / TSPKG
        • Wdigest Clear Text
        • DPAPI secrets
        • SAM & Registry
        • NTDS.dit & vshadow
        • comsvcs.dll
        • Meterpreter
        • Procdump & LSASS
        • AD User Comments
        • SYSVOL & Group Policy Preferences
        • LAPS Passwords
        • GSMA Passwords
        • HiveNightmare
        • Mimikatz Cheat sheet
        • Other Tools / Techniques
      • β­•Persistence
        • Certificates
        • DCSync
        • DCShadow
        • Silver Ticket
        • Golden Ticket
        • Skeleton Key
        • WMI
        • PowerShell Remoting
        • Remote Registry
        • Rights Abuse
        • AdminSDHolder
        • DSRM
        • Kerberos Checksum Validation ( MS14-068 )
    • πŸ”΄Linux
      • β­•Physical Attacks
      • β­•Enumeration
      • β­•Privilege Escalation
        • SUID / SGID abuse
        • /etc/shadow & /etc/passwd
        • cron/crontab abuse
        • Sudo Abuse
        • Capabilities Abuse
        • Environment Variables
          • LD_LIBRARY_PATH
          • LD_PRELOAD
        • Shared Object Injection
        • NFS
        • man CE Pager Argument
        • MySQL UDF
        • UDEVD
        • STDIN/STDOUT
        • Unix Socket Exploitation
        • Dirty Pipe
        • Docker
          • SUID Docker
      • β­•Lateral Movement
        • Infecting Running Processes
        • VIM Config File Keylogger
        • SSH Hijacking
        • Samba Secrets to Domain Admin
        • Hiding Processes
        • Simple User-mode Rootkits
        • Vino VNC Server
      • β­•Credential Dumping
        • Swap Dump
        • mimipinguin
        • unshadow
        • 3snake
      • β­•Persistence
        • Startup User File Backdoor
        • PHP Backdoor
        • Apache mod_rootme
        • Startup Service Backdoor
        • xdg Backdoor
        • rootbash SUID
        • apt Backdoor
        • Driver Backdoor
        • Core Pattern
        • dash Backdoor
        • Creating an SUID Binary
        • Systemd netcat bind shell
        • Xinetd UDP portnock
        • openSSL reverse shell
        • motd Backdoor
        • Auth Log Backdoor
        • RSYSLOG Backdoor
        • sshd Backdoor
        • VIM Config Backdoor
        • .bashrc Backdoor
        • Adding a Root user
        • Crontab Reverse Shell
        • SSH persistence password-less
      • β­•Covering Tracks
    • πŸ”΄Command & Control (C2)
      • β­•Cobalt Strike
      • β­•Metasploit
      • β­•Empire & Starkiller
      • β­•Covenant
    • πŸ”΄Shells and Payloads
      • β­•Shell Escape / Interactive Shell
      • β­•LOL Binaries
      • β­•msfvenom
      • β­•SharpShooter & Ivy
      • β­•Other Payloads
    • πŸ”΄Payload Delivery
      • β­•Powershell Reflective DLL Load
      • β­•HTML Smuggling
      • β­•Office Macros
      • β­•DDE Auto - Word/Excel
      • β­•.SLK Excel
      • β­•XLM Macro 4.0
      • β­•LNK
      • β­•embedded OLE + LNK objects
      • β­•JScript
      • β­•HTA
      • β­•VBS
      • β­•VBA
      • β­•RTF
      • β­•REG
      • β­•MSI / MSIEXEC
      • β­•IQY
      • β­•CHM / HHC
      • β­•SCR
    • πŸ”΄Pivoting
      • β­•SSH Forwarding
      • β­•Socat Stealth Port Forward
      • β­•Socat Reverse Shell Relay
      • β­•HTTP Tunneling
      • β­•ICMP Tunneling
      • β­•DNS Tunneling
      • β­•Metasploit Pivoting
      • β­•Cobalt Strike Pivoteing
      • β­•VPN Tunneling
      • β­•Other Tools
    • πŸ”΄Exfiltration / File Transfer
      • β­•Encode / Decode Files
      • β­•TCP / UDP
      • β­•DNS
      • β­•SSH
      • β­•ICMP
      • β­•SMB
      • β­•FTP
      • β­•HTTP
      • β­•Other Methods
    • πŸ”΄Password Attacks
      • β­•Online Attacks
      • β­•Offline Attack
      • β­•Word List
      • β­•Cheat Sheet
    • πŸ”΄Defense Evasion
      • β­•Basic Tricks
      • πŸ”§Powershell Tricks
      • β­•Disabling Defenses
      • β­•UAC Bypass
      • β­•Process Migration
      • β­•Dechaining Macros
      • β­•VBA Sandbox Evasion
      • β­•AMSI Bypass
      • β­•SRP & AppLocker Bypass
      • β­•GPO Bypass
  • πŸ“˜Blue Team
    • πŸ”΅Threat Modeling / Hunting / Intelligence
    • πŸ”΅Linux Hardening
      • πŸ”ΉOS Security
        • Update Strategy
        • Service Management
        • Physical Security
        • Grub Hardening
        • Kernel Parameters
        • Process Isolation
      • πŸ”ΉAccounts & Passwords
        • Users & Groups
        • Password Security & Sudoers
      • πŸ”ΉAccess Control & Ownership
      • πŸ”ΉFile System Security
      • πŸ”ΉIntegrity Check
      • πŸ”ΉSandboxing
      • πŸ”ΉNetwork
      • πŸ”Ήiptables
        • Rule Sets
      • πŸ”ΉService Hardening
        • BIND9
        • vsftpd
        • Nginx
        • Apache
        • SSH
      • πŸ”ΉSystem Audit
      • πŸ”ΉLogging
        • auditd
      • πŸ”ΉEncryption
    • πŸ”΅Security Architecture
      • πŸ”ΉLayered Security
  • πŸŸͺPurple Teaming
    • 🟣Adversary Emulation
  • 🟧programming
    • 🟠C Programming
      • πŸ”ΈBasic Structure
      • πŸ”ΈGCC Compiler
      • πŸ”ΈPreprocessors
      • πŸ”ΈData Types
      • πŸ”ΈType Qualifiers
      • πŸ”ΈPointers
      • πŸ”ΈDynamic Memory Allocation
      • πŸ”ΈLoops
      • πŸ”ΈConditional Statements
      • πŸ”ΈFunctions
      • πŸ”ΈInput / Output
      • πŸ”ΈMacros
      • πŸ”ΈFiles
      • πŸ”ΈStrings Manipulation
      • πŸ”ΈBit Manipulation
      • πŸ”ΈData Structures
        • Arrays
        • Structures
        • Unions
      • πŸ”ΈAbstract Data Types
        • Stack
        • Queue
        • Linked List
          • Singly Linked List
          • Doubly Linked List
      • πŸ”ΈLibraries & Linking
      • πŸ”ΈError Recovery
    • πŸ”§Assembly ( NASM )
      • Intel IA-32 Environment
      • Basic Structure
      • Variables and Data Types
      • Most-used Instructions
      • input / output
  • 🟫Miscellaneous
    • 🟀GNU Screen / tmux
    • 🟀SSH Tricks
    • 🟀Cats
      • netcat
      • ncat
      • pwncat
      • socat
      • πŸ”§powercat
    • 🟀Curl
    • 🟀Cross-compiling Binaries
Powered by GitBook
On this page
  1. programming
  2. C Programming
  3. Abstract Data Types
  4. Linked List

Singly Linked List

A singly linked list requires that each item of information contain a link to the next element in the list. Each data item usually consists of a structure that includes information fields and a link pointer.

Basically, there are two ways to build a singly linked list. The first is simply to put each new item on the end of the list. The other is to insert items into specific places in the listβ€” in ascending sorted order, for example. How you build the list determines the way the storage function is coded. Let's start with the simpler case of creating a linked list by adding items on the end.

The items stored in a linked list generally consist of structures because each item must carry with it a link to the next item in the list as well as the data itself. Therefore, we will need to define a structure that will be used in the examples that follow. Since mailing lists are commonly stored in a linked list, an address structure makes a good choice. The data structure for each element in the mailing list is defined here:

struct address {
    char name[40];
    char street[40];
    char city[20];
    char state[3];
    char zip[11];
    struct address *next; /* link to next address */
} info;

The slstore( ) function, shown next, builds a singly linked list by placing each new element on the end. It must be passed a pointer to a structure of type address that contains the new entry, and a pointer to the last element in the list. If the list is empty, the pointer to the last element in the list must be null.

void slstore(struct address *i,
struct address **last)
{
if(!*last) *last = i; /* first item in list */
else (*last)->next = i;
i->next = NULL;
*last = i;
}

Although you can sort the list created with the function slstore( ) as a separate operation, it is easier to sort the list while building it by inserting each new item in the proper sequence of the chain. Also, if the list is already sorted, it would be advantageous to keep it sorted by inserting new items in their proper location. You do this by sequentially scanning the list until the proper location is found, inserting the new entry at that point, and rearranging the links as necessary.

Three possible situations can occur when you insert an item in a singly linked list. First, it may become the new first item; second, it can go between two other items; or third, it can become the last element.

Keep in mind that if you change the first item in the list, you must update the entry point to the list elsewhere in your program. To avoid this overhead, you can use a sentinel as a first item. In this case, choose a special value that will always be first in the list to keep the entry point to the list from changing. This method has the disadvantage of using one extra storage location to hold the sentinel, but this is usually not an important factor.

The function shown next, sls_store( ), will insert address structures into the mailing list in ascending order based on the name field. The function must be passed a pointer to the pointer to the first element and the last element in the list along with a pointer to the information to be stored. Since the first or last element in the list could change, sls_store( ) automatically updates the pointers to the beginning and end of the list if necessary. The first time your program calls sls_store( ), first and last must point to null.

/* Store in sorted order. */
void sls_store(struct address *i, /* new element to store */
    struct address **start, /* start of list */
    struct address **last) /* end of list */ {
        struct address *old, *p;
        p = *start;
        if(!*last) { /* first element in list */
        i->next = NULL;
        *last = i;
        *start = i;
        return;
    }
        old = NULL;
        while(p) {
        if(strcmp(p->name, i->name)<0) {
        old = p;
        p = p->next;
    }
else {
    if(old) { /* goes in middle */
    old->next = i;
    i->next = p;
    return;
    }
    i->next = p; /* new first element */
    *start = i;
    return;
        }
    }
    (*last)->next = i; /* put on end */
    i->next = NULL;
    *last = i;
}

It is quite easy to step through a linked list: Begin at the top of the list, and then follow the links. Usually this code is so short that it is simply placed inside another routine such as a search, delete, or display function. For example, the routine shown here displays all of the names in a mailing list:

void display(struct address *start)
{
    while(start) {
        printf(''%s\n", start->name);
        start = start->next;
    }
}

When display( ) is called, start must be a pointer to the first structure in the list. After that, the next field points to the next item. The process stops when next is null. Retrieving items from the list is as simple as following a chain. A search routine based on the name field could be written like this:

struct address *search(struct address *start, char *n)
{
    while(start) {
        if(!strcmp(n, start->name)) return start;
        start = start->next;
    }
return NULL; /* no match */
}

Because search( ) returns a pointer to the list item that matches the search name, it must be declared as returning a structure pointer of type address. If there is no match, null is returned. Deleting an item from a singly linked list is straightforward. As with insertion, there are three cases: deleting the first item, deleting an item in the middle, and deleting the last item. Figure 22-4 shows each of these operations. The function that follows deletes a given item from a list of structures of type address:

void sldelete(
    struct address *p, /* previous item */
    struct address *i, /* item to delete */
    struct address **start, /* start of list */
    struct address **last) /* end of list */
    {
        if(p) 
            p->next = i->next;
        else 
            *start = i->next;
            
        if(i==*last && p)
            *last = p;
}

sldelete( ) must be sent pointers to the deleted item, the item before it in the chain, and the first and last items in the list. If the first item is to be removed, the previous pointer must be null. The function automatically updates start and last when the item one of them points to is deleted. Singly linked lists have one major drawback that prevents their extensive use: The list cannot be read in reverse order. For this reason, doubly linked lists are usually used.

PreviousLinked ListNextDoubly Linked List

Last updated 2 years ago

🟧
🟠
πŸ”Έ